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LETTER TO THE EDITOR 

Nonlinear bias and the convective Fisher equation 

Oliver Schtinborn, Rashmi C Desai, and Dietrich Stauffert 
Department of Physics, University of Toronto. Toronto. Ontario. Canada M5S IA7 

Received 2 I February I594 

AbstracL We combine random walks. $wth and decay, and convection. in a Monte Carlo 
simulation to model I D  interface dynamics with fluctuations. The continuum limit corresponds 
to the deterministic Fisher equation with convection. We find qualitatively the same type of 
asymmetry, as well as velocity difference, for interface profiles moving in opposite directions. 
However. a transition apparent in the mean-field (continuum) limit is not found in the Monte 
Carlo simulation. 

The Fisher equation [l] combines growth, decay, and diffusion, and was originally used to 
model population growth subject to limited resources. More recently, a nonlinear convective 
term found in several other pattern-forming systems [2,3] was added to this equation [4]. 
This convection is phenomenologically justified in the case where an external field has a 
non-zero component parallel to interface motion, and competes with inertial effects. In one 
dimension, the new equation, which is called FEC (Fisher equation with convection), then 
reads 

where all quantities are dimensionless, p is a positive parameter which cannot be scaled out 
and serves to tune the relative strength of convection, and the density U will be between 0 
and 1 (thus the convection is said to be towards the right; this is different from advection 
to the right, which is a linear process). The ‘mean-field’ equation (1)  neglects random 
fluctuations, which we include via a Monte Carlo simulation. Also, the nonlinear nature 
of convection makes its modelling via Monte Carlo non-trivial, an interesting problem in 
itself. Reference 141 gives more background literature on the Fisher equation and the FEC. 

The Monte Carlo steps are taken as follows. We take ui to be an integer multiple of l/n 
(e.g. n = 4). so that each site i of our one-dimensional chain carries U ;  n particles. We take 
into account the diffusion, $ a Z u / a x 2 ,  by a random walk. For the growth and saturation, 
u(1 -U). we increase ui with probability 1 - ui: each of the U; n particles produces another 
particle with probability 1 - U;. Thus ‘saturation’ means that it becomes more difficult to 
produce new particles as the U; = 1 value is approached, as when resources are limited. 
A negative probability corresponds to decreasing uj with probability ut - 1 to the excess 
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over 1 (although instead we set ui = 1 for speed; this does not change the results). The 
nonlinear convection term, puau/ax,  is modelled by moving each particle at site i to the 
right with the densipdependent probability pui+1/2, thus introducing a nonlinear bias in 
the random walk. Making the probability depend on the right neighbour rather than on the 
site itself eliminates artificial bias due to discretisation. If p > 1 we rescale the time t by 
a factor p and divide each of the above three probabilities by p .  Denoting the change in 
density between two time steps at cell i by Aui, the master equation can then be written 

(2) 

The first term is recognized to be the discretized diffusion, the second one the growth- 
saturation, and the last one is the symmetrized version of the discrete convection (this 
eliminates artificial bias due to discretization). Note that the effect of convection will be 
lost if n is only 1: it will in effect be simple linear advection. It will also disappear when 
each particle in the system becomes surrounded by empty cells, as is the case when there is 
no growth process (e.g. only diffusion and convection, as in Burgers’ equation [3]). Hence, 
contrary to diffusion, this algorithm will not yield convection if only one particle is in the 
system or the system has only 2 levels (0 and 1, i.e n = I), hence we choose n 2 2. 

One time unit in our one-dimensional simulations (one Monte Carlo step per site) 
corresponds to one convection, one diffusion, and one growth attempt (sequentially), each 
handling all particles in the system at once. The diffusion update was done randomly. The 
convection was tried sequentially right to left, and randomly, without noticeable difference. 
Growth was done sequentially left to right (although, due to the local nature of growth, 
one does not expect this to be important). We started with a non-zero density in the centre 
of the chain and stopped the simulation when the boundaries became occupied. Averages 
were taken over 1000 or 2000 runs. For random numbers we used the built-in 48-bit linear 
congruential function (m) on our Hewlett-Packard workstation, and verified consistency 
with the GGL 32-bit LCF, and with a shuffler routine [5] to make the cycle of the random 
number generator effectively infinite. No differences were found. 

Figures 1 and 2 respectively show the density profiles for n = 4 and n = 64, both 
for p = 4, at large enough times that the fronts do not change shape. The profile is not 
symmetric, as expected due to the presence of convection, which breaks left-right symmetry: 
the interface thickness on the right is smaller than on the left end of the density plateau. 
However, this asymmetry is less pronounced than in the solution of (1) in [4]. The long- 
time velocities with which the left and the right interfaces propagate are plotted in figure 3. 
This may be compared with the mean-field predictions [6]: d (for left front, independent 
of p: for right front, for p < fi) and l j p  + p/2 (for right front when p 2 A). The 
important qualitative difference is that in the continuum limit the two fronts have the same 
speed fi for a certain range of p <~d, while in the discrete Monte Carlo modelling of 
convection, the two speeds appear different for all non-zero p. Understanding the reason for 
this difference will require further investigation. Often mean-field theories predict transitions 
that disappear when fluctuations are included (e.g. onedimensional king model). 

We found that reducing the probabilities for diffusion, growth, saturation and convection 
by the same amount restores the strong asymmetry found in [41 between the left and the 
right interface thickness. This is equivalent to decreasing the time step, thus making the 
time evolution of the system less discontinuous. This also allows p to span a greater domain 
without having to do any time rescalings. The results in figure 4 were obtained by reducing 
probabilities by a factor of 1 (so p could go continuously from 0 to 8) and looking at 
p = 8. The discreteness of the time step then seems crucial in determining the amount of 

I A u ~  = & ( U j + l  - 2 U i  + u ~ - I )  + uj( l  - U j )  - z p ~ , ( U i + l  - U[-]). 
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Figure 1. Density profiles far chains of length 5W. with p = 4 and n = 4 (avenge over IWO 
realizations). 
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Figure 2 As figure I ,  for n = 64. 
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asymmetry convection can give to the profile. No qualitative change was observed in the 
p-dependence of the asymptotic front velocity, however. Elsewhere [6] we have shown that 
in the corresponding mean-field description, the asymptotic velocity is constant for p < 0.5. 
In our present Monte Carlo simulations, it is not clear whether the velocity is really constant 
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Figure 3. Asymptotic velocities of the le8 and right interface for n = 4 and n = 64. Rescaled 
mean field results for ( I )  are shown (right front, full cwe;  left front, broken curve) for guolilative 
c~mp*ir;on. as they give velociiy greater or equal to fi. 
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Figure 4. As in figure 2. but with the probabilities for all four stochastic processes reduced by 
a factor i, and II = 8. 

or just slowly varying for f l  < 0.5. A more thorough investigation must be done for small 
/I, 

To summarize and conclude, fluctuations were introduced in a phenomenological model 
involving diffusion, growth and saturation, and nonlinear convection. The convection seems 
to have been properly modelled in that basic qualitative features of the continuum description 
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are observed both in lefi-right asymmetry of interface velocities as well as the interface 
profile. The fluctuations become less important when a smaller timescale is used (obtained 
by reducing the probabilities by some factor larger than 1). A more thorough evaluation of 
the effect of discreteness, whether improvements can be made to the modelling of convection 
via Monte Carlo, as well as studies of a Langevin-type equation ((1) with noise) and 
generalization to higher dimensions, are possible venues worth exploring. 

We would like to thank Chuck Yeune for heloful discussions. This work is SUDDOrted 
by NSERC of Canada, the Fonds Canadien piur I'Aidc 
Council. 
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